Menu
Biology articles
The Golden Goose Is Awarded
Salmonella Strain Spreads Alongside HIV
Fair Flu Viruses Closely Matched
Creative Emulsification
Inflammation for Regeneration
Editor's choice in microbiology
Debate Over Stem Cell Effectiveness
Editor's choice in molecular biology
Telomeres Affect Gene Expression
Re-sensitizing Resistant Bacteria
Vitamin C Slays TB Bacteria
Plant scientists, innovators
The First Plant Interactome
Plant RNAs Found in Mammals
Opinion: Beyond the Model
Sweet and Sour Science
Plant RNA Paper Questioned
Flower Barcodes
Microbial Perfume
How Plants Feel
New Databases Harvest a Rich Bounty of Information on Crop Plant Metabolism
Carnegie Institution for Science Receives Grand Challenges Explorations Grant
Genetically engineered trees could help restore devastated American chestnut
Evolution coup: study reveals how plants protect their genes
  Have you had your cereal today?
Cereals are grasses that produce grains, the bulk of our food supply. Carnegie’s Plant Biology Department is releasing genome-wide metabolic complements of several cereals including rice, barley, sorghum, and millet. Along with corn, whose metabolic complement was released previously, these species are responsible for producing over 1.5 billion tons of grains annually world-wide. Understanding how these important species harness sunlight to grow and produce seeds will help researchers improve crop yields, combat world hunger, and produce biofuel that could lower fuel costs and perhaps fight climate change.

The databases are designed to help researchers gain a detailed, genome-scale view of the chemical reactions that define a plant’s metabolic life. This includes activities such as converting carbon dioxide and sunlight into chemical energy, transporting nutrients from the soil, and responding to the environment. All of the databases and data can be searched, browsed, or downloaded from the Plant Metabolic Network project website.

“We are trying to understand how the metabolic systems of plants are organized, function and evolve so that we and others can ultimately engineer a variety of different plants,” says program leader Seung Yon Rhee. “This degree of across-the-board knowledge about the enzymes, biochemical pathways, and regulatory networks that control a plant’s metabolism is necessary for meeting the ever-expanding demand for production of food, biofuel and phyto-pharmaceuticals.”

Rhee’s group consists of plant biologists, scientific curators, post-doctoral scholars, and student interns. The group employs a number of approaches to generate information, integrating techniques and concepts from a wide range of fields including genomics, computer science, statistics, evolution, molecular biology, and biochemistry.

In addition to the world’s most important grain crops--rice, sorghum, barley, and millet--Rhee’s group is also releasing the metabolic complements of switchgrass, which is an important potential biofuel source, and Brachypodium, which serves as an experimental model used by scientists to better understand all grasses. Additionally, Rhee’s group is releasing substantially expanded metabolic databases for 10 species that were already part of the site. These include corn, soybean, Arabidopsis, wine grape, cassava, poplar, moss, Selaginella, papaya, and Chlamydomonas.

Together with an all-plant metabolic pathway database called PlantCyc, the Plant Metabolic Network site contains the world’s largest collection of publically available metabolic information for plants..
Íîòàðèàëüíàÿ êîíòîðà íîòàðèóñà Êàëèíè÷åíêî Ò. Ã..
Plants Put Limit on Ice Ages
Carnegie donates landmark clones to biology
Plants on Steroids: Key Missing Link Discovered
Gene Function Discovery: Guilt by Association
Cracking the Plant-Cell Membrane Code
Private Support Helps Public Plant Research
Scientists Watch Cell-Shape Process for First Time
How plants choose their mates
Mastermind Steroid Found in Plants
Unlocking the secrets of a plant’s light sensitivity
Nailing down a crucial plant signaling system
What makes a plant a plant?
New component of a plant steroid-activated pathway discovered
Big Boost to Plant Research
The Heart of the Plant
New tool offers unprecedented access for root studies
Steroids control gas exchange in plants
Plant toughness: Key to cracking biofuels?
Amoeba may offer key clue to photosynthetic evolution
The future of plant science – a technology perspective
Plant research funding crucial for the future
Wolf B. Frommer Receives Bogorad Award for Excellence in Plant Biology
Lighting up the plant hormone “command system”
Plant organ development breakthrough
Breakthrough: How salt stops plant growth
New Cancer Diagnostic Technique Debuts
Plant Science Could Ease Global Food and Fuel Demands
Have you had your cereal today?
Menu
Researchers close in on engineering recognizable, drug-free Cannabis plant
UC Riverside Researchers Develop Genetic Map for Cowpea
New research shows how mobile DNA survives—and thrives—in plants, animals
Cucumber Genome Published
Structural study at EMBL reveals how plants respond to water shortages
“Safety Valve” Protects Photosynthesis from Too Much Light
Weeds Could Help To Feed The World
Antagonistic Genes Control Rice Growth
Making New Enzymes to Engineer Plants for Biofuel Production
Green Plant Transport Mystery Solved
Gene Discovery To Increase Biomass Needed For Green Fuel
Are genes our destiny?
New African cassava resists devastating viruses
Species richness and genetic diversity do not go hand in hand in alpine plants
Scientists discover how cancer may take hold
Green algae—the nexus of plant/animal ancestry
New Twist on Life’s Power Source
Controlling a sea of information
Plant Steroids Offer New Paradigm for How Hormones Work
Future of biology rests in harnessing data avalanche
Carnegie’s Arthur Grossman Receives Gilbert Morgan Smith Medal
Plant Scientists Participate in DOE Energy Frontier Research Center
Advance in understanding cellulose synthesis
Midget Plant Gets Makeover