Menu
Biology articles
The Golden Goose Is Awarded
Salmonella Strain Spreads Alongside HIV
Fair Flu Viruses Closely Matched
Creative Emulsification
Inflammation for Regeneration
Editor's choice in microbiology
Debate Over Stem Cell Effectiveness
Editor's choice in molecular biology
Telomeres Affect Gene Expression
Re-sensitizing Resistant Bacteria
Vitamin C Slays TB Bacteria
Plant scientists, innovators
The First Plant Interactome
Plant RNAs Found in Mammals
Opinion: Beyond the Model
Sweet and Sour Science
Plant RNA Paper Questioned
Flower Barcodes
Microbial Perfume
How Plants Feel
New Databases Harvest a Rich Bounty of Information on Crop Plant Metabolism
Carnegie Institution for Science Receives Grand Challenges Explorations Grant
Genetically engineered trees could help restore devastated American chestnut
Evolution coup: study reveals how plants protect their genes
  Carnegie donates landmark clones to biology
With the information explosion, it’s remarkable that so little is known about the interactions that proteins have with each other and the protective membrane that surrounds a cell. These interactive, so-called membrane proteins regulate nutrients and water fluxes, sense environmental threats, and are the communications interface with neighboring cells and within the cell. Now with National Science Foundation funding, researchers at the Carnegie Institution’s Department of Plant Biology have cloned genes to produce membrane proteins that may initiate the instructions for genes to turn on in the nucleus. They just donated 2010 of the clones for genes that function in the cell’s interaction with its environment to the Arabidopsis Biological Resource Center (ABRC is at Ohio State University) for other scientists to use to help advance fields from medicine to farming. These genes are now used to unravel the interaction of the membrane proteins amongst each other.

Recent research at the Carnegie department has shown that cells across different species use the same mechanism at the cell membrane to regulate the uptake of the vital nutrient nitrogen. Previous Carnegie work indicated that plants have a novel regulatory mechanism that controls nutrient uptake—neighboring pore-like structures at a plant cell’s surface physically interact to control the uptake. “Since plants, animals, bacteria, and fungi all share similar genes for this activity, we wanted to see in this study if same feature could occur across species,” remarked Dominique Loqué lead author of a study published in the July 6, Journal of Biological Chemistry.

In the previous work, the scientists looked at the end of the protein Arabidopsis ammonium transporter (AMT1;1). This protein portion is called the C-terminus and it regulates the interactions of the pore-like structures at the membrane surface in plants. In this study they focused on the underlying mechanism of the pore activity by using mutant proteins that cannot shut the pores off with their C-terminus to see how they work in yeast and immature eggs of the frog Xenopus in the presence of ammonium.

The researchers were totally surprised that the mechanism in which three subunits regulate each other was found in the primitive archaebacteria. It means that it evolved billions of years ago. The fact that the C-terminus is found in all other bacteria, fungi, and plants demonstrates that it was necessary in the atmosphere where they developed—periods in which the toxic ammonium accumulated on the early Earth. This mechanism has been retained although a single mutation can make the transporters work independently. So why did this simpler mutation not succeed? The researchers believe that there must still be selective pressure on the system. The simplest explanation is that the mechanism is still necessary today, probably to control uptake and prevent toxicity.

“The newly donated 2010 clones will now be used to see how common such regulation by neighbors is. It also emphasizes the importance and the potential that the new clones have for understanding a spectrum of problems from kidney diseases to engineering better crops,” remarked director of the department Wolf Frommer.

This work was made possible by grants from NSF 2010, in addition to support from Carnegie. Other participants on the 2010 project include June Kwak from the University of Maryland, Julian Schroeder from UCSD, and Sarah Assmann from Penn. State.
Plants Put Limit on Ice Ages
Carnegie donates landmark clones to biology
Plants on Steroids: Key Missing Link Discovered
Gene Function Discovery: Guilt by Association
Cracking the Plant-Cell Membrane Code
Private Support Helps Public Plant Research
Scientists Watch Cell-Shape Process for First Time
How plants choose their mates
Mastermind Steroid Found in Plants
Unlocking the secrets of a plant’s light sensitivity
Nailing down a crucial plant signaling system
What makes a plant a plant?
New component of a plant steroid-activated pathway discovered
Big Boost to Plant Research
The Heart of the Plant
New tool offers unprecedented access for root studies
Steroids control gas exchange in plants
Plant toughness: Key to cracking biofuels?
Amoeba may offer key clue to photosynthetic evolution
The future of plant science – a technology perspective
Plant research funding crucial for the future
Wolf B. Frommer Receives Bogorad Award for Excellence in Plant Biology
Lighting up the plant hormone “command system”
Plant organ development breakthrough
Breakthrough: How salt stops plant growth
New Cancer Diagnostic Technique Debuts
Plant Science Could Ease Global Food and Fuel Demands
Have you had your cereal today?
Menu
Researchers close in on engineering recognizable, drug-free Cannabis plant
UC Riverside Researchers Develop Genetic Map for Cowpea
New research shows how mobile DNA survives—and thrives—in plants, animals
Cucumber Genome Published
Structural study at EMBL reveals how plants respond to water shortages
“Safety Valve” Protects Photosynthesis from Too Much Light
Weeds Could Help To Feed The World
Antagonistic Genes Control Rice Growth
Making New Enzymes to Engineer Plants for Biofuel Production
Green Plant Transport Mystery Solved
Gene Discovery To Increase Biomass Needed For Green Fuel
Are genes our destiny?
New African cassava resists devastating viruses
Species richness and genetic diversity do not go hand in hand in alpine plants
Scientists discover how cancer may take hold
Green algae—the nexus of plant/animal ancestry
New Twist on Life’s Power Source
Controlling a sea of information
Plant Steroids Offer New Paradigm for How Hormones Work
Future of biology rests in harnessing data avalanche
Carnegie’s Arthur Grossman Receives Gilbert Morgan Smith Medal
Plant Scientists Participate in DOE Energy Frontier Research Center
Advance in understanding cellulose synthesis
Midget Plant Gets Makeover