Menu
Biology articles
The Golden Goose Is Awarded
Salmonella Strain Spreads Alongside HIV
Fair Flu Viruses Closely Matched
Creative Emulsification
Inflammation for Regeneration
Editor's choice in microbiology
Debate Over Stem Cell Effectiveness
Editor's choice in molecular biology
Telomeres Affect Gene Expression
Re-sensitizing Resistant Bacteria
Vitamin C Slays TB Bacteria
Plant scientists, innovators
The First Plant Interactome
Plant RNAs Found in Mammals
Opinion: Beyond the Model
Sweet and Sour Science
Plant RNA Paper Questioned
Flower Barcodes
Microbial Perfume
How Plants Feel
New Databases Harvest a Rich Bounty of Information on Crop Plant Metabolism
Carnegie Institution for Science Receives Grand Challenges Explorations Grant
Genetically engineered trees could help restore devastated American chestnut
Evolution coup: study reveals how plants protect their genes
  Midget Plant Gets Makeover
A tiny plant with a long name (Arabidopsis thaliana) helps researchers from over 120 countries learn how to design new crops to help meet increasing demands for food, biofuels, industrial materials, and new medicines. The genes, proteins, and other traits of this fast-growing, tiny mustard plant reside in a vast database dubbed the Arabidopsis Information Resource (TAIR), which has over 1.6 million page hits each month. The TAIR group, headed by Dr. Eva Huala at Carnegie’s Department of Plant Biology, just released a new version of the genome sequence of this model plant, which includes an array of improvements and novel features that promise to accelerate this critical research.

The new TAIR9 genome release contains detailed information on all 33,518 genes that make up this tiny plant (including 114 newly discovered genes and 168 new pseudogenes), the proteins produced by these genes, and extensive new experimental and computationally predicted gene-function information.

Huala highlighted the advances: “We now have a ranking system that provides a measure of our confidence that the structure of a specific gene is correct; we’ve overhauled information on pseudogenes—the evolutionary remnants that start out as copies of conventional protein-coding genes and sometimes take on interesting new functions; and we’ve made extensive updates to the genome sequence based on new sequence data submitted to TAIR.”

In 2000, Arabidopsis was the first plant genome to be sequenced. Partly due to the vast experimental data on gene function, which TAIR has painstakingly extracted from the literature and associated to the genes, and because of an extensive set of molecular tools developed for this plant, the Arabidopsis genome is the most advanced plant genome in the world and is the most commonly used experimental plant today. Its small size and fast growth allow large-scale experiments on drought and salt tolerance, resistance to plant diseases, and other topics with a direct impact on economic and food quality issues to be carried out quickly and economically, and the results applied to important crop species.

“TAIR is a crucial resource for plant sciences, but its impact goes far beyond,” remarked Dr. Wolf Frommer, director of Carnegie’s Department of Plant Biology. “TAIR9, as the ‘green’ reference database, is crucial for understanding the function and engineering of algae as well as crop plants. It is the basis for all improvement of crop plants to meet the challenges of a growing population as well as climate change.”
ñèì êàðòû îïòîì
Plants Put Limit on Ice Ages
Carnegie donates landmark clones to biology
Plants on Steroids: Key Missing Link Discovered
Gene Function Discovery: Guilt by Association
Cracking the Plant-Cell Membrane Code
Private Support Helps Public Plant Research
Scientists Watch Cell-Shape Process for First Time
How plants choose their mates
Mastermind Steroid Found in Plants
Unlocking the secrets of a plant’s light sensitivity
Nailing down a crucial plant signaling system
What makes a plant a plant?
New component of a plant steroid-activated pathway discovered
Big Boost to Plant Research
The Heart of the Plant
New tool offers unprecedented access for root studies
Steroids control gas exchange in plants
Plant toughness: Key to cracking biofuels?
Amoeba may offer key clue to photosynthetic evolution
The future of plant science – a technology perspective
Plant research funding crucial for the future
Wolf B. Frommer Receives Bogorad Award for Excellence in Plant Biology
Lighting up the plant hormone “command system”
Plant organ development breakthrough
Breakthrough: How salt stops plant growth
New Cancer Diagnostic Technique Debuts
Plant Science Could Ease Global Food and Fuel Demands
Have you had your cereal today?
Menu
Researchers close in on engineering recognizable, drug-free Cannabis plant
UC Riverside Researchers Develop Genetic Map for Cowpea
New research shows how mobile DNA survives—and thrives—in plants, animals
Cucumber Genome Published
Structural study at EMBL reveals how plants respond to water shortages
“Safety Valve” Protects Photosynthesis from Too Much Light
Weeds Could Help To Feed The World
Antagonistic Genes Control Rice Growth
Making New Enzymes to Engineer Plants for Biofuel Production
Green Plant Transport Mystery Solved
Gene Discovery To Increase Biomass Needed For Green Fuel
Are genes our destiny?
New African cassava resists devastating viruses
Species richness and genetic diversity do not go hand in hand in alpine plants
Scientists discover how cancer may take hold
Green algae—the nexus of plant/animal ancestry
New Twist on Life’s Power Source
Controlling a sea of information
Plant Steroids Offer New Paradigm for How Hormones Work
Future of biology rests in harnessing data avalanche
Carnegie’s Arthur Grossman Receives Gilbert Morgan Smith Medal
Plant Scientists Participate in DOE Energy Frontier Research Center
Advance in understanding cellulose synthesis
Midget Plant Gets Makeover