Menu
Biology articles
The Golden Goose Is Awarded
Salmonella Strain Spreads Alongside HIV
Fair Flu Viruses Closely Matched
Creative Emulsification
Inflammation for Regeneration
Editor's choice in microbiology
Debate Over Stem Cell Effectiveness
Editor's choice in molecular biology
Telomeres Affect Gene Expression
Re-sensitizing Resistant Bacteria
Vitamin C Slays TB Bacteria
Plant scientists, innovators
The First Plant Interactome
Plant RNAs Found in Mammals
Opinion: Beyond the Model
Sweet and Sour Science
Plant RNA Paper Questioned
Flower Barcodes
Microbial Perfume
How Plants Feel
New Databases Harvest a Rich Bounty of Information on Crop Plant Metabolism
Carnegie Institution for Science Receives Grand Challenges Explorations Grant
Genetically engineered trees could help restore devastated American chestnut
Evolution coup: study reveals how plants protect their genes
  Scientists discover how cancer may take hold
A team, led by researchers at the Carnegie Institution,* has found a key biochemical cycle that suppresses the immune response, thereby allowing cancer cells to multiply unabated. The research shows how the biomolecules responsible for healthy T-cells, the body’s first defenders against hostile invaders, are quashed, permitting the invading cancer to spread. The same cycle could also be involved in autoimmune diseases such as multiple sclerosis. The work is published in the September 25, 2007, issue of PLoS Biology.

The scientists used special molecular “nanosensors” for the work. “We used a technique called fluorescence resonance energy transfer, or FRET, to monitor the levels of, tryptophan, one of the essential amino acids human cells need for viability,” explained lead author Thijs Kaper. “Humans get tryptophan from foods such as grains, legumes, fruits, and meat. Tryptophan is essential for normal growth and development in children and nitrogen balance in adults. T-cells also depend on it for their immune response after invading cells have been recognized. If they don’t get enough tryptophan, the T-cells die and the invaders remain undetected.”

The scientists looked at the chemical transformations that tryptophan undergoes as it is processed in live human cancer cells. When tryptophan is broken down in the cancer cells, an enzyme (dubbed IDO) forms molecules called kynurenines. This reduces the concentration of tryptophan in the local tissues and starves T-cells for tryptophan. A key finding of the research was that a transporter protein (LAT1), present in certain types of cancer cells, exchanges tryptophan from the outside of the cell with kynurenine inside the cell, resulting in an excess of kynurenine in the body fluids, which is toxic to T-cells.

“It’s double trouble for T-cells,” remarked Wolf Frommer. “Not only do they starve from lack of tryptophan in their surroundings, but it is replaced by the toxic kynurenines, which wipes T-cells out.”

The scientists think that this cycle may be also be involved in cells involved in certain autoimmune diseases. In these cases the cells may not be able to take up or convert enough tryptophan. Without enough of the amino acid or the IDO enzyme to convert tryptophan, the cells cannot produce enough kynurenine. Lacking kynurenine, the body’s own T-cells cannot be kept in check, so they rebel and attack the body.

The FRET system detects metabolites such as sugars and amino acids using a biosensor tag. A protein is genetically fused to tags at opposite ends of a molecule. The tags are made from different colors of the jellyfish green fluorescent protein (GFP). When a metabolite binds to the biosensor, it changes the shape of the sensor’s backbone, altering the position of the fluorescent tags. When a specific wavelength of light activates one tag, it fluoresces. When the metabolite causes the tags to move close together, the other tag will also fluoresce—resonating like a tuning fork. This system allows the scientists to visually track the location and concentration of certain biochemicals.

“Our FRET technology with the novel tryptophan nanosensor has an added bonus,” said Thijs. “It can be used to identify new drugs that could reduce the ability of cancer cells to uptake tryptophan or their ability to degrade it. We believe that this technology could be a huge boost to cancer treatment.”
canada drug pharmacy
Plants Put Limit on Ice Ages
Carnegie donates landmark clones to biology
Plants on Steroids: Key Missing Link Discovered
Gene Function Discovery: Guilt by Association
Cracking the Plant-Cell Membrane Code
Private Support Helps Public Plant Research
Scientists Watch Cell-Shape Process for First Time
How plants choose their mates
Mastermind Steroid Found in Plants
Unlocking the secrets of a plant’s light sensitivity
Nailing down a crucial plant signaling system
What makes a plant a plant?
New component of a plant steroid-activated pathway discovered
Big Boost to Plant Research
The Heart of the Plant
New tool offers unprecedented access for root studies
Steroids control gas exchange in plants
Plant toughness: Key to cracking biofuels?
Amoeba may offer key clue to photosynthetic evolution
The future of plant science – a technology perspective
Plant research funding crucial for the future
Wolf B. Frommer Receives Bogorad Award for Excellence in Plant Biology
Lighting up the plant hormone “command system”
Plant organ development breakthrough
Breakthrough: How salt stops plant growth
New Cancer Diagnostic Technique Debuts
Plant Science Could Ease Global Food and Fuel Demands
Have you had your cereal today?
Menu
Researchers close in on engineering recognizable, drug-free Cannabis plant
UC Riverside Researchers Develop Genetic Map for Cowpea
New research shows how mobile DNA survives—and thrives—in plants, animals
Cucumber Genome Published
Structural study at EMBL reveals how plants respond to water shortages
“Safety Valve” Protects Photosynthesis from Too Much Light
Weeds Could Help To Feed The World
Antagonistic Genes Control Rice Growth
Making New Enzymes to Engineer Plants for Biofuel Production
Green Plant Transport Mystery Solved
Gene Discovery To Increase Biomass Needed For Green Fuel
Are genes our destiny?
New African cassava resists devastating viruses
Species richness and genetic diversity do not go hand in hand in alpine plants
Scientists discover how cancer may take hold
Green algae—the nexus of plant/animal ancestry
New Twist on Life’s Power Source
Controlling a sea of information
Plant Steroids Offer New Paradigm for How Hormones Work
Future of biology rests in harnessing data avalanche
Carnegie’s Arthur Grossman Receives Gilbert Morgan Smith Medal
Plant Scientists Participate in DOE Energy Frontier Research Center
Advance in understanding cellulose synthesis
Midget Plant Gets Makeover